

Knowledge that will change your world

Introduction to metabolomics research

Stephen Barnes, PhD
University of Alabama at Birmingham
sbarnes@uab.edu
934-7117; MCLM 452

Course goals

- 1. To understand the vital roles of small molecules/metabolites
 - To provide energy for the chemical and enzymatic processes of life
 - To provide the building blocks for the macromolecules (DNA, RNA, proteins, carbohydrates, lipids)
 - As co-factors
 - As signaling molecules
 - As biomarkers for disease

- 2. To understand the origins of metabolites
 - Produced by (human) cells
 - Produced by the things that we eat (the food-ome)
 - Plants (wheat, corn)
 - Fruits (apples, oranges, strawberries)
 - Vegetables (rice, potatoes, broccoli, peas)
 - Dairy products, including fermented forms
 - Meat from other animals
 - Xenobiotics
 - Produced by microorganisms in our bodies
 - Therapeutics, smoking, household chemicals

Course goals

- 3. To understand that a metabolomics experiment is high dimensional
 - i.e., it is compares the intensities of hundreds, if not thousands, of distinct species
 - Very important statistical consequences
 - Cannot afford to do a robust experiment that fully satisfies theoretical statistical principles
 - Very important to sit down with a statistician <u>prior</u> to executing an experiment

Dr. Hemant Tiwari

- 4. To select the appropriate method for extracting/recovering metabolites
 - Metabolites encompass an enormous range of chemistries
 - Gaseous (H₂, H₂S)
 - Volatile (butyric acid, acetone, skatole)
 - Hydrophilic (glucose)
 - Charged-positive/negative (amino acids, nucleotides, organic acids, amines)
 - Hydrophobic (lipids, steroids, hydrocarbons)
 - No single method suitable for all metabolites

Dr. Prasain and Barnes

Course goals

- 5. Selecting the analytical approach
 - In situ analysis
 - Laser ablation of frozen tissue
 - Other desorption methods
 - Magic angle spinning NMR
 - Other spectroscopic methods
 - Extracted samples
 - NMR
 - GC-MS (1- and 2D chromatography and MSMS)
 - LC-MS (1- and 2D chromatography and MSMS)
 - CE-MS
 - Targeted vs untargeted analysis

Drs. Placzek and Barnes

6. Analysis of the data

- Data alignment
 - NMR methods
 - LC-MS and GC-MS methods (XCMS; ADAP)
- Statistical evaluation
 - Univariate and multivariate analysis (MetaboAnalyst)
 - XCMSonline
 - Mummichog
- Data visualization
 - XMCSonline
 - Mzmine

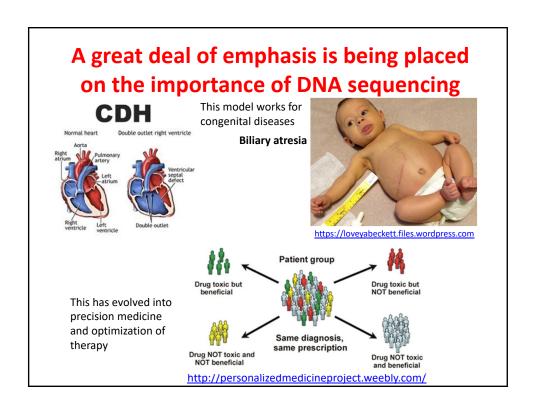
Dr. Barnes

Course goals

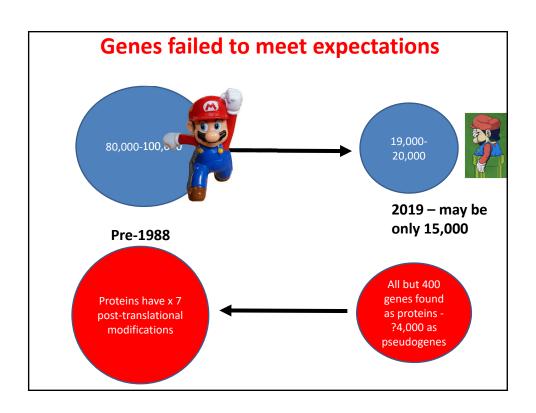
7. Identifying the "interesting" metabolites

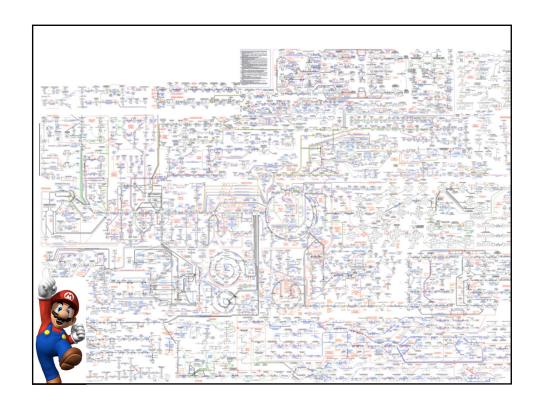
- Use of MS (absolute mass)
 - METLIN
 - Mummichog
 - ChemSpider
- MSMS (fragmentation spectra)
 - METLIN
- Metabolite standards
- Importance of retention time
 - Multiple column conditions

Dr. Barnes and Prasain


- 8. Pathways and applications
 - Mummichog
 - KEGG pathway mapping
 - Applications to:
 - Adverse cardiovascular risk
 - Diabetes
 - Lens and kidney diseases
 - Cancer

What is "Metabolomics"?


- Metabolomics is like other types of –omics analysis (microarray, RNA-Seq, proteomics, etc.)
 - Offers a "comprehensive" view of all detectable chemicals (not just metabolites)
 - Can be applied to body fluids
 - Plasma/sera, urine, saliva, tears, fecal water, etc.
 - Also to tissues
 - Liver, lung, heart, kidney, brain, eyes, etc.
 - And to single cells
 - Human, rodent, yeast, bacteria, etc.


Defining who we are chemically

- Are we "Living in the Promisedland" as per Willie Nelson's song?
- Does an understanding of the functions of human genes define the chemical make up of our body fluids and tissues?
- How does metabolomics provide information on the circulating chemicals?
- Are the detected chemicals metabolites produced by human enzymes?
- So, what are we really exposed to? And does it make a difference?

Metabolomics in the newborn Dr. Dan Sharer

The Undiagnosed Disease Network
Dr. Matthew Might

Where does the metabolome come from?

It starts with what fixes CO₂ and N₂

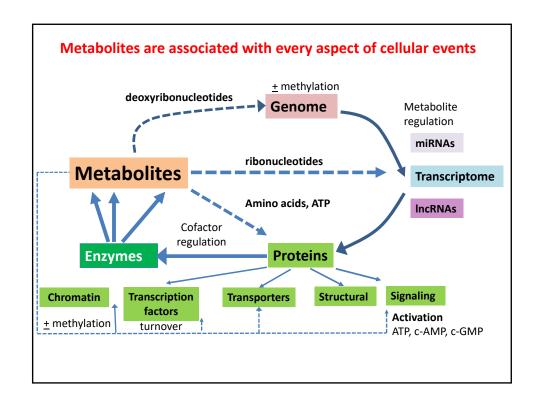
Trees convert CO₂ to organic compounds

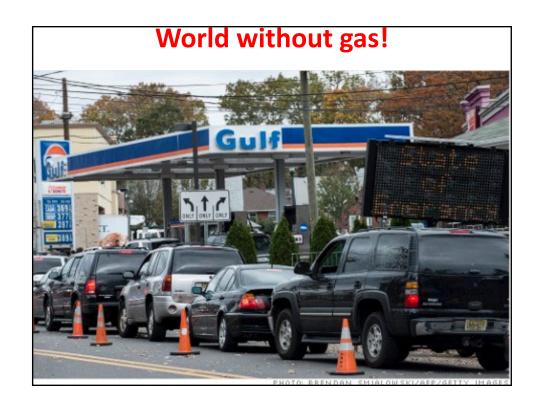
Field of soybeans – they fix N_2 because of nitrogen-fixing bacteria in their root nodules

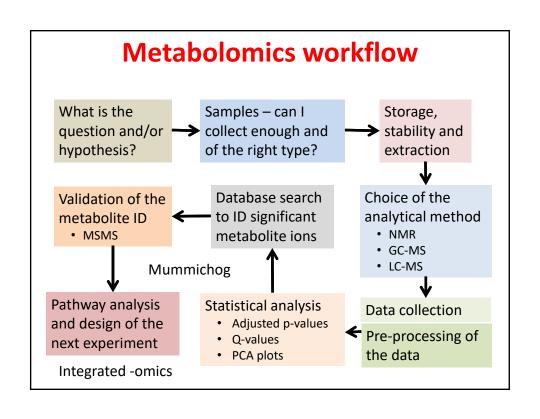
Plants have more genes than humans

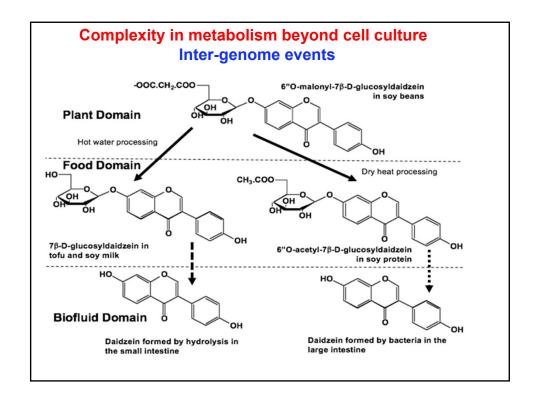
- Why? Plants can't run away!!
- Instead, they have to practice chemical warfare to prevent attack by aphids and microorganisms
- Many plants are poisonous to us
- Understanding which plants were safe to eat, or were so if cooked, represented the rise of agriculture and civilization

Compounds in plants and fruits


- Carotenoids
- · Many vitamins
- Polyphenols and anthocyanins
- · Not made by human cells




Other sources of body chemicals


- The microbiomes
 - Humans are not single organisms
 - Instead, we are super-organisms
 - The gut microbiome has 10 times the number of cells found in the rest of the (human) body
 - It makes novel compounds that are absorbed, enter the blood stream and tissues
- Chemicals from the environment
 - industrial contaminants, therapeutics, supplements
- Interactions between the xenobiotics and the human enzyme systems

Two questions

Why isn't the batrachotoxin a poison to the frog?

Does the frog synthesize the toxin?

ANSWER: The frog has mutations of three residues in the Na⁺-channel protein that prevent binding of the batrachotoxin

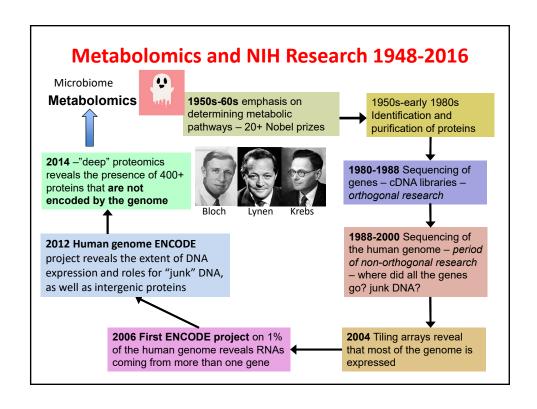
ANSWER: It doesn't, it gets the toxin from what it eats – ants, beetles, etc.

So, it all depends on what you eat.

Dart frogs bred in captivity and fed a non-insect diet don't make batrachotoxin

Where did metabolomics came from?

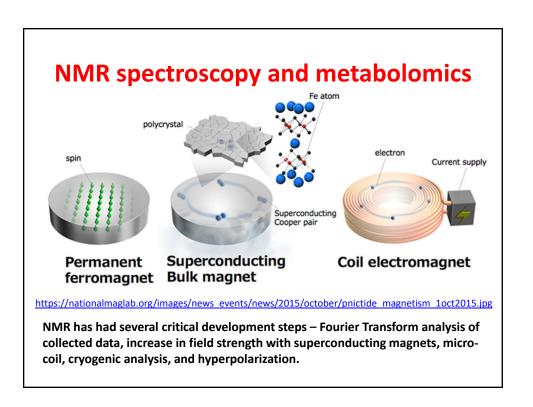
Transition of mass spectrometry to biology



Ralf Schoenheimer

David Rittenberg

- While the politicians, tyrants, dictators and despots were salivating at the thought of developing nuclear weapons from unstable isotopes in the early part of the 20th Century, two scientists began the pursuit of the peaceful use of stable isotopes, initially deuterium (²H), and later carbon (¹³C) and nitrogen (¹⁵N), to study biochemical pathways
- Understanding the pathways of metabolism was born


Progress in LC-MS

- Commercial HPLC appeared in the early 1970s to separate thermally stable and unstable molecules
- The challenge remained to find a way to get the unstable compounds into the gas phase
 - Applied to macromolecules (peptides, proteins) as well as metabolites
- Thermospray had some initial success
- Electrospray ionization and chemical ionization radically changed analysis, allowing compounds to go into the gas phase at <u>atmospheric pressure</u> and <u>room temperature</u>

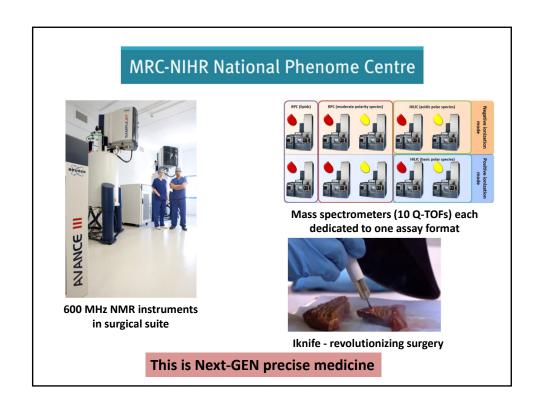
LC-MS

- Suddenly, there were what appeared to be no limits (or very few) to what could be analyzed
- Unheard of, <u>robust</u> mass spectrometers came into play
 - "A reliable mass spectrometer" was considered in 1990 to be an oxymoron

Changing times in Computing

- 1950 The Cambridge colleagues of Watson and Crick calculated the structure of DNA by putting data onto punched cards and taking them by train to London for analysis – and to the fog – the "cloud" in 1950s
- 1964 Seymour Cray develops the CDC 6600 (1 Mflops)
- 1967 I used paper tape to collect data from a radio gas chromatograph and then submitted them via a terminal reader to the CDC 6600 at the University of London

Today in Computing


On my desk in 2019

- The Apple MacBook Air with 4 quad core Intel i7 processors
 - Operates at 2.0 GHz
 - Memory of 8 GB
 - Access 1.333 GHz
 - 512 GB Flash memory storage
 - 10 Gbs Thunderbolt I/O
- Also cost ~\$2,000

Cheaha high-performance computing

- Initially IBM Blue-Gene operating at 4.733 Tflop/s
- Replaced by Cheaha, in its current configuration it has 2800 conventional CPU cores and 6.6 PB raw storage
- It operates at 468 Tflop/s (max)

UAB capabilities in metabolomics

TMPL mass spec lab MCLM 459/427 Stephen Barnes, Director 205-934-7117/3462

SCIEX 5600 TripleTOF

SCIEX 6500 Qtrap with SelexION

Central Alabama NMR facility Chemistry Bdg William Placzek, Director 205-934-2465

Great challenges in metabolomics

- The extent of the metabolome
 - From gaseous hydrogen to earwax
- Having complete databases
 - METLIN has over 1 million metabolite records, but your problem always creates a need to have more
 - Improvement in the size of a MSMS database
- Storing and processing TBs of data
- Standards and standard operating procedures
- · Being able to do the analyses in real time

NIH Common Fund Metabolomics Program

- Metabolomics Workbench: http://www.metabolomicsworkbench.org/
- Regional Comprehensive Metabolomics Research Centers
 - University of Michigan: http://mrc2.umich.edu/index.php
 - UC Davis Metabolomics Center: http://metabolomics.ucdavis.edu/
 - UNC-CH: http://www.uncnri.org/wp-content/uploads/2016/12/NIHERCMRC.pdf
 - SE Center for Integrated Metabolomics: http://secim.ufl.edu/
 - Resource Center for Stable Isotope Metabolomics: http://bioinformatics.cesb.uky.edu/bin/view/RCSIRM/
 - Mayo Clinic Metabolomics Resource: http://www.mayo.edu/research/core-resources/metabolomics-resource-core/overview